### Find all subsets of a fixed size k of the set [1, 2, 3... n] subset set general    Posted: 5 years ago Updated: 4 years ago Edit answers (1) views (9792)

Write a recursive function that generates all subsets of a fixed size $$k$$ of a given set $$[1,2,3...n]$$. $$e.g,$$ if $$n=5$$ and $$k=3$$, the output will look like

1 2 3
1 2 4
1 2 5
1 3 4
1 3 5
1 4 5
2 3 4
2 3 5
2 4 5
3 4 5

Like Find all subsets of a set [1,2,3...n] you can ignore the order in which the subsets are generated.

 Posted: 5 years ago Updated: 5 years ago 0 0 Edit To generate all subsets of size $$k$$ of $$[1, 2, ..., n]$$ , first put $$n$$ into the current subset being generated and generate all subsets of size $$k-1$$ of $$[1, 2, ..., n-1]$$. Then, skipping over element $$n$$, generate all subsets of size $$k$$ of $$[1, 2, ..., n-1]$$.public static void recursiveGenerateKSubsets(boolean[] subset, int n, int k){ /* Base case 1: When n = k, the entire set needs to be generated. Set the remaining elements true and print out the set */ if(n == k){ for(int i = 0; i < n; i++){ subset[i] = true; printSubset(subset); return; } } /* Base case 2: Since k = 0, it means that the subset has been completely generated. Set the remaining elements false and print out the subset */ if (k == 0){ for(int i = 0; i < n; i++){ subset[i] = false; printSubset(subset); return; } } /* Recursive case */ if(k > 0 & & n > k){ /* Recursive call 1 */ subset[n-1] = true; recursiveGenerateKSubsets(subset, n-1, k-1); /* Recursive call 2 */ subset[n-1] = false; recursiveGenerateKSubsets(subset, n-1, k); }}